Classification of biosensor time series using dynamic time warping: applications in screening cancer cells with characteristic biomarkers

نویسندگان

  • Shesh N Rai
  • Patrick J Trainor
  • Farhad Khosravi
  • Goetz Kloecker
  • Balaji Panchapakesan
چکیده

The development of biosensors that produce time series data will facilitate improvements in biomedical diagnostics and in personalized medicine. The time series produced by these devices often contains characteristic features arising from biochemical interactions between the sample and the sensor. To use such characteristic features for determining sample class, similarity-based classifiers can be utilized. However, the construction of such classifiers is complicated by the variability in the time domains of such series that renders the traditional distance metrics such as Euclidean distance ineffective in distinguishing between biological variance and time domain variance. The dynamic time warping (DTW) algorithm is a sequence alignment algorithm that can be used to align two or more series to facilitate quantifying similarity. In this article, we evaluated the performance of DTW distance-based similarity classifiers for classifying time series that mimics electrical signals produced by nanotube biosensors. Simulation studies demonstrated the positive performance of such classifiers in discriminating between time series containing characteristic features that are obscured by noise in the intensity and time domains. We then applied a DTW distance-based k-nearest neighbors classifier to distinguish the presence/absence of mesenchymal biomarker in cancer cells in buffy coats in a blinded test. Using a train-test approach, we find that the classifier had high sensitivity (90.9%) and specificity (81.8%) in differentiating between EpCAM-positive MCF7 cells spiked in buffy coats and those in plain buffy coats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot Arm Performing Writing through Speech Recognition Using Dynamic Time Warping Algorithm

This paper aims to develop a writing robot by recognizing the speech signal from the user. The robot arm constructed mainly for the disabled people who can’t perform writing on their own. Here, dynamic time warping (DTW) algorithm is used to recognize the speech signal from the user. The action performed by the robot arm in the environment is done by reducing the redundancy which frequently fac...

متن کامل

Optimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping

This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...

متن کامل

Accurate Time Series Classification Using Partial Dynamic Time Warping

Dynamic Time Warping (DTW) has been widely used in time series domain as a distance function for similarity search. Several works have utilized DTW to improve the classification accuracy as it can deal with local time shiftings in time series data by non-linear warping. However, some types of time series data do have several segments that one segment should not be compared to others even though...

متن کامل

Time Series Case Based Reasoning for Image Categorisation

This paper describes an approach to Case Based Reasoning (CBR) for image categorisation. The technique is founded on a time series analysis mechanism whereby images are represented as time series (curves) and compared using time series similarity techniques. There are a number of ways in which images can be represented as time series, this paper explores two. The first considers the entire imag...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016